Although most of the ATP results from oxidative phosphorylation and the electron transport chain ETC , 4 ATP are gained beforehand 2 from glycolysis and 2 from the citric acid cycle. The ETC is embedded in the inner mitochondrial membrane and comprises four main protein complexes and an ATP synthase. This distribution of protons generates a concentration gradient across the membrane.
Four protons are needed to synthesize 1 ATP. Since a single NADH produces 2. Importantly, glycolysis occurs in the cytosol and the ETC is located in the mitochondria in eukaryotes. The mitochondrial membrane is not permeable to NADH, hence the electrons of the 2 NADH that are produced by glycolysis need to be shuttled into the mitochondria.
Given the different ATP yield depending on the electron carrier, the total yield of cellular respiration is 30 to 32 ATP per glucose molecule. Da Poian, A. Nature Education 3 9 Lane, N. To learn more about our GDPR policies click here. If you want more info regarding data storage, please contact gdpr jove. Your access has now expired. Provide feedback to your librarian.
If you have any questions, please do not hesitate to reach out to our customer success team. Login processing Chapter 8: Cellular Respiration.
Chapter 1: Scientific Inquiry. Chapter 2: Chemistry of Life. Chapter 3: Macromolecules. Chapter 4: Cell Structure and Function. Chapter 5: Membranes and Cellular Transport.
Chapter 6: Cell Signaling. Chapter 7: Metabolism. Chapter 9: Photosynthesis. Chapter Cell Cycle and Division. Chapter Meiosis. Chapter Classical and Modern Genetics. Chapter Gene Expression. Now, the next point I want to make here is that it's actually been possible for us to calculate the exact number of ATP produced in substrate level phosphorylation and we've also nailed down the amount of NADH and FADH two molecules that are produced in this process as well. But for a quite a while, it was difficult to nail down the exact number of ATP molecules that were produced in oxidative phosphorylation.
And for this reason, actually, and I'll get back to kind of why we're unable to, you know, kind of nail down a number here but for this reason, you might often see quite a range of predictions for how much ATP's actually produced in one cycle of cellular respiration, just to give you an idea of that, you know, when I look at some textbooks, you can see a range of anywhere from 30 to 38 molecules of ATP that are predicted to be produced for the oxidation of one molecule of glucose.
So, of course, to get back to this kind of elusive calculation of ATP, researchers have done controlled studies in which they basically take a known amount of NADH or FADH two and they have mitochondria available in the lab, and they basically allow the mitochondria to oxidatively phosphorylate these molecules and essentially measure how much ATP is produced, but kind of to their surprise at first, they found that for NADH, for one molecule of NADH, they calculated, there was not a whole number of ATP produced, in fact, they found that there was somewhere between two to three ATP molecules produced for every one NADH molecule.
Now, for the longest time, researchers kind of looked at these results and said, "You know, whole numbers are a lot easier to deal with, "and so, why don't we just assume, "for the sake of assumption, "that we can kind of round up, "and we'll say that for every one molecule of NADH, "let's say that we have three molecules of ATP produced.
But of course, we still have this range and in fact, it's worth kind of pausing to stop and think about for a second, if it is surprising that we have this range in the first place. And so, to think about this a little bit further, I wanna go ahead and kind of just draw out without getting too detailed, kind of a depiction of what's going on in the electron transport chain, so remember, that the electron transport chain is taking place in the mitochondria, and the mitochondria has two membranes: we have the inner mitochondrial membrane, general label here is I, and we have the outer mitochondrial membrane.
And along the inner mitochondrial membrane, we have a series of proteins that are known as protein complexes. And you know, these all have specific names, but just for our purposes, it's important to recognize there are kind of just four main protein complexes, and in some textbooks, people will actually call ATP synthase, which I'm gonna go ahead and draw here in yellow as complex number five, so let me go ahead and label these, one through five, just so we remember that, so, these four represent the protein complexes that shuttle electrons and of course, five represents ATP synthase.
Now, recall that the basic premise here is that these reduced electron carriers donate electrons to the electron transport chain and in fact, specifically, NADH donates two electrons to protein complex number one, and FADH two donates two electrons to protein complex number two.
Now, the second important point is that as these electrons are kind of flowing down these proteins, for every two electrons that kind of flow by, it's actually been calculated that protein complex number one pumps four protons into the intermembrane space, protein complex three, it pumps, also, four protons, and protein complex number four pumps two protons. And protein complex number two doesn't really contribute. Now, with these facts in mind, we can go ahead and actually calculate how many protons are pumped for a molecule of FADH two and how many protons are pumped for a molecule of NADH.
So, let's go ahead and just quickly do that here, so because NADH donates at the very first electron complex, it contributes to a total of four plus four plus two, or ten protons are pumped out for every molecule of NADH. On the other hand, FADH two enters in complex number two, so it only contributes to the total pumping of six protons and so, we can say that there are six protons that are pumped for every molecule of FADH two. And so, of course, maybe the question we should really be asking is how many protons does it take, or how many protons need to flow through this ATP synthase to phosphorylate one molecule of ADP into ATP, and so, I'm actually gonna go ahead back to our ratios up here and write up here that if we knew how many protons were necessary to produce one molecule of ATP, we would be able to calculate essentially the ratio of ATP to NADH or FADH two.
And it's this calculation that I think researchers are actually still trying to, you know, nail down and, you know, I'm sure depending on the type of cell and the state of the cells, the efficiency of this process is going to be different and might, you know, change moment to moment and so, maybe the expectation to have an exact number is not realistic, but researchers are pretty confident with the number, right now, currently of four protons being necessary to produce one molecule of ATP, so, I'm gonna go ahead and just write that in here.
Glucose catabolism connects with the pathways that build or break down all other biochemical compounds in cells, but the result is not always ideal. For example, sugars other than glucose are fed into the glycolytic pathway for energy extraction. Moreover, the five-carbon sugars that form nucleic acids are made from intermediates in glycolysis. Certain nonessential amino acids can be made from intermediates of both glycolysis and the citric acid cycle. Lipids, such as cholesterol and triglycerides, are also made from intermediates in these pathways, and both amino acids and triglycerides are broken down for energy through these pathways.
Overall, in living systems, these pathways of glucose catabolism extract about 34 percent of the energy contained in glucose.
ATP Yield The amount of energy as ATP gained from glucose catabolism varies across species and depends on other related cellular processes.
0コメント